Transform solutions of Dirichlet problems in quarter-spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quarter-stratifiability in Ordered Spaces

In this paper we study Banakh’s quarter-stratifiability among generalized ordered (GO)-spaces. All quarterstratifiable GO-spaces have a σ-closed-discrete dense set and therefore are perfect, and have a Gδ-diagonal. We characterize quarter-stratifiability among GO-spaces and show that, unlike the situation in general topological spaces, quarter-stratifiability is a hereditary property in GO-spac...

متن کامل

Asymptotic Behaviour of Solutions of Fourth Order Dirichlet Problems

The behaviour of solutions to fourth order problems is studied through the decomposition into a system of second order ones, which leads to relaxed formulations with the introduction of measure terms. This allows to solve a shape optimization problem for a simply supported thin plate. Ref. S.I.S.S.A. 32/97/M (March 97) Asymptotic behaviour of solutions of fourth order Dirichlet problems 1

متن کامل

Inverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems

In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results  how that the simplicity and efficiency of this method.

متن کامل

Nodal solutions of nonlinear elliptic Dirichlet problems on radial domains

Let Ω ⊂ R be a ball or an annulus and f : R → R absolutely continuous, superlinear, subcritical, and such that f(0) = 0. We prove that the least energy nodal solution of −∆u = f(u), u ∈ H 0 (Ω), is not radial. We also prove that Fučik eigenfunctions, i. e. solutions u ∈ H 0 (Ω) of −∆u = λu − μu−, with eigenvalue (λ, μ) on the first nontrivial curve of the Fučik spectrum, are not radial. A relat...

متن کامل

Exact Boundary Behavior of Solutions to Singular Nonlinear Dirichlet Problems

In this article we analyze the exact boundary behavior of solutions to the singular nonlinear Dirichlet problem −∆u = b(x)g(u) + λa(x)f(u), u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded domain with smooth boundary in RN , λ > 0, g ∈ C1((0,∞), (0,∞)), lims→0+ g(s) = ∞, b, a ∈ Cα loc(Ω), are positive, but may vanish or be singular on the boundary, and f ∈ C([0,∞), [0,∞)).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1974

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089500002330